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SUMMARY

Rocket propellant and propulsion technology improvements can be used to reduce the development time and

operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles

safer, more operable, and higher performing. Five technology areas are described: Monopropellants_:_Alternative

Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propel-
lants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

INTRODUCTION

Space exploration and utilization require vehicles that are operable, safe, and reliable. Technologies for improv-

ing rocket performance are also desirable. As space missions become more ambitious, the needs for reducing cost

and increasing the capability of rocket systems will increase. Propellant technologies have the power to make space

flight more affordable and deliver higher performance.

Throughout the world, a new set of space related activities is being formulated. Many nations are taking advan-

tage of the powerful viewpoint of Earth from orbit and beyond. New space activities in the USA are planned which

include small expendable boosters, larger reusable launch vehicles, high speed aircraft, and new small spacecraft for

many commercial and civilian space operations. These new space planning activities have identified the need for

new lower cost ways of gaining access to space, and many ideas are coming to bear on this difficult issue. The cost

of space access is particularly vexing, as many people and much infrastructure is usually associated with large

orbital aerospace and rocket vehicles. One option to reduce space access costs is propellant technologies. Advances

made over the last 60 years in propellants have shown that propellants can be made safer, less costly, and/or more

energetic. Investing in propellant technologies can provide benefits across the board to all major international pro-

grams and the NASA Enterprises (ref. 1)
With the recent advent of reusable launch vehicles (RLVs), the investigation of combined cycle and combina-

tion propulsion, and the development of small boosters for low cost spacecraft, the interest in advanced propellants

has arisen. With RLVs, the need is for propellants that improve the vehicle mass fraction, as the idea of single stage

to orbit makes unceasing demands on the performance of lightweight materials, cryogenic systems, and, of course,

rocket propulsion. Combined and combination propulsion, using both air-hreathing and rocket propulsion, are an-

other set of options for single stage and two stage to orbit vehicles. These vehicles will also stress the limits of many

technologies, and high density, high energy hydrocarbons and hydrogen will be needed. Advanced cooling tech-

niques with endothermic fuels is also attractive for many applications. Small boosters are also in vogue. The use of
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smallboostersforspaceaccesshasbecomemoreattractive,especiallyforentrepreneursattemptingtousespacefor
profitablegain,anduniversitieswhowishtousespaceflight,satelliteconstruction,andoperationaslearningtools.

Highspeedaircraft,withfleetfoot,perhapsapproachingorbitalvelocities,arealsointheplansforcommercial
gain,nationalpowerprojection,observation,andspaceaccess.Theseaircraftrequirecoolingtechnologiesfortheir
airframesaswellastheirinternalsystems,passengers,andpayloads.Typically,thefuelisusedasaheatabsorber,
buthypersonicflightrequirescoolingcapacitiesthatexceedthatoftraditionalfuels.Endothermicfuelshavethe
capacitytothermallybreakupandsplitintocomponents.Thisbreakupofthefuelabsorbsheatandincreasesthe
fuelcoolingcapacity.

Manystudieshavealsoshownthepowerfulleveragegainedwithhighperformanceupperstages.Highspecific
impulsepropellantswithhighdensitycanreducethesizeoflaunchvehicles,therebyperformingthesamemission
withasmallerlaunchvehicle,reducingthecostofspaceaccess.Improvingtheseupperstageshasledtotheuseof
O2/H2propellants,butthedensityofH2hashamperedtheabilityofupperstagesinthesearchforhighdensity.
AdditivestoH2ortheuseofalternativehydrocarbonsmayallowtheupperstagetodeliverthesamepayloadperfor-
mancewhileoccupyingasmallervolume,andreducetheoveralllaunchvehiclemassandcost.

Spacecraftpropulsiontechnologyimprovementsarecriticallyimportantin reducingspacevehiclecosts.Justas
withtheupperstages,reducingthemassandsizeofthespacecraftcanreducethesizeofthelaunchvehicleneeded.
Asthepropulsionsystemisoftenthelargestandmostmassivecomponentofaspacecraft,thereisapowerfullever-
agetobegainedwithhigherdensity,higherperformancepropellants.Sizereductionscanoftenallowtheintegration
offunctionsthatfurtherreduceoverallvehiclecosts,suchasthecombiningofapogeepropulsionfororbitcircular-
ization,andtheuseofthesamepropellantsandenginesforon-orbitmaneuveringandorbitmaintenance.

Thefuturealsobeckonswithnewpropellantsbornofthecomputerandthepropellantdesigner.A dreamof
manyistheharnessingofthemostpowerfulchemicalbondsbetweenindividualatoms,ofhydrogen,boron,carbon,
andaluminum.Theatoms,oncecreated,arearrestedwithinacryogenicsolid,andreleasedastheyentertherocket
engine.Thoughthesepropellantsarecurrentlydifficulttofabricatein largequantities,thereishopethatthepower
ofmolecularmanipulationfrommicrotechnology,andultimatelynanotechnology,willmakethesenew,andinsome
casesnotyetknown,propellantsashiningreality.

Fivemajorareasofpropellanttechnologieswillbediscussedin thepaper.Theinfluenceofthesetechnologies
onvehicledesign,someofthecurrentresearchinterests,andthestatusofthetechnologieswillbeaddressed.

THETECHNOLOGIES

Fivemajorareashavebeenidentifiedforfruitfulresearch.ThefiveareasareMonopropellants,Alternative
Hydrocarbons,GelledHydrogen,MetallizedGelledPropellants,andHighEnergyDensityPropellants.Duringthe
developmentoftheNASAAdvancedSpaceTransportationPlan,thesetechnologieswereidentifiedasthemost
likelytohavehighleveragefornewNASAvehiclesforeachoftheEnterprises.SeveralNASAresearchprograms
hadfosteredworkinfuelsunderthetopic,"FuelsandSpacePropellantsforReusableLaunchVehicles,"(ref.3)in
1996and1997.Oneofit's componentswasformulatedtopromotethedevelopmentandcommercializationof
monopropellantrocketfuels,hypersonicfuels,andhighenergydensitypropellants.Thisresearchhasresultedinthe
teamingofsmallbusinesswithlargeindustry,universities,andgovernmentlaboratories.Thisworkison-goingwith
7contractors,andthecommercialproductsfromthesecontractswillbolsteradvancedpropellantresearch.This
workiscontinuingunderotherprograms,recentlyrealignedundertheThreePillarsofNASA:GlobalCivilAvia-
tion,RevolutionaryTechnologyLeaps,andAccesstoSpace.

Thefivetechnologiesaredescribedandtheirapplicationsandtheireffectonfuturemissionsisdiscussed.

MONOPROPELLANTS

Currentspacecraftandsatelliteusersandmanufacturersarelookingformoreenvironmentallybenign,safer
propellants.Environmental,safety,andcostconcernswithhydrazine(N2H4)anditsderivativeshaveledtothe
developmentofmonopropellantswithahighwatercontentandhighenergyadditives.Thoughthefirstversionsof
thefuelsmaybelowerperformingthanhydrazine,thecostassociatedwithlaunchprocessingandthegroundcrew's
safetyaresignificantlyreducedwiththenewmonopropellants.Saferpropellantscanreducecostsbyeliminatingthe
needforself-containedatmosphericprotectiveensemble(SCAPE)suits(ref.2)thatareneededfortoxicpropellants.
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Also,extensiveandprohibitivepropellantsafetyprecautions,andisolationofthespacevehiclefromparallelactivi-
tiesduringpropellantloadingoperationscanbeminimizedoreliminated(ref.3).If usedonfuturesatellites,the
costsforoperatingthemwillbelowered,insomecasesdramatically.Monopropellanttestingofhydroxylammo-
niumnitrate(HAN)-basedfuelshasbeguntoshowpromiseandwillsoonbeadoptedforon-boardpropulsionsys-
temsoncommunicationssatellitesandLEOsatellitesandconstellations(ref.4).

Technologiesforignitingthemonopropellantsareimportant.Currentmonopropellantsuseacatalyticignition
system,butsomeofthehighenergyadditivescanfoulthecatalyst,makingit lesseffective.Laserandcombustion
waveignitionarepotentialalternatives.Materialscompatibilityofthemonopropellantswiththetankmaterialsis
alsoverycriticalforlongtermspacemissions.Polymericlinersorchemicalpassivationofmetallicfueltanksmay
berequiredtoalleviatethisproblem.Thehighwatercontentofthemonopropellantwillcreateahighlyoxidizing
environmentintherocketchamberandnozzle.Hightemperaturecoatingswillberequiredtominimizethechemical
attackoftheexhaustontherocketenginewalls.

Advancedmonopropellantsarepotentiallysimplertohandlethantraditionalbipropellants,andhaveadensity
comparabletosolidrocketmotors.Figures1and2showthebenefitsofmonopropellantsforLiquidRocketBoost-
ers(LRB)fortheSpaceShuttle.ThemonopropellantshownhereisTEGDN/AP/A1(ref.5)andit canreducethe
overallgrossliftoffweight(GLOW)oftheShuttle,andreducetheboosterlength,makingthemmorecompact.In
figure1,theGLOWoftheSpaceShuttleisreducedby9.3percentwhenusingaTEGDN/AP/A1monopropellant
LRB.Theboosterlengthforthisoptionis124ft.Byallowingtheboosterlengthtogrowto142ft,thepayloadis
increasedfrom50000to70500lbm,andtheresultingboosterisstillconsiderablyshorterthanthe149-ftSRB,as
showninfigure2.Theseoptionsforincreasingpayloadandreducingboosterlengthgivethedesignermoreoptions
thatcanleadtofurtherreductionsinvehiclemass and increases in payload performance.

Other monopropellants using gelled fuels can also improve performance and increase safety (ref. 5). Gelled

H202 and liquid TEGDN/AN/A1 have the potential for very high density, excellent performance, and safety. Metal
particles could be added to the gelled H202, further increasing it' s density.

ALTERNATIVE HYDROCARBONS

The regenerative cooling of spacecraft engines and other components can improve overall vehicle performance.

Endothermic fuels can absorb energy from an engine nozzle and chamber and help to vaporize high density fuel

before entering the combustion chamber (refs. 6 to 10). For supersonic and hypersonic aircraft, endothermic fuels

can absorb the high heat fluxes created on the wing leading edges and other aerodynamically heated components.

Dual fuel options are also possible, where the endothermic hydrocarbon (HC) fuels are used for the lower speed

portions of flight below Mach 8, and the hydrogen fuel is used for the final acceleration to the upper stage separation

velocity.

Figure 3 shows the GLOW for several airbreathing space vehicles. The baseline case is a hydrogen fueled

Single Stage to Orbit (SSTO) vehicle, whose GLOW is less than 1 million lbm. Both Two Stage to Orbit (TSTO)
cases have GLOW values that are 1.5 and 1.7 million lbm, respectively. Endothermic hydrocarbon fuels, because of

their greater heat load absorption, require an increased GLOW over H2-fueled Two Stage to Orbit vehicles. This

increase in GLOW is relatively small at 0.2 million Ibm, however, and eliminates the need for H 2 for the first stage.

Several types of related hydrocarbons can increase fuel density and reduce the overall mass of the vehicle structure,

tankage and related thermal protection systems.

Material compatibility is also a crucial factor in the design of these endothermic fuel aircraft. Figure 4 shows

the effect of different feed system metals on the phase change (or gasification) of aircraft fuels for cooling applica-

tions. These design issues are especially important for long lived operational vehicles, such as military and civilian

aircraft or reusable spacecraft.

A research area that has gained emphasis is Hypersonic Fuels. With the planned development of Reusable

Launch Vehicles and airbreathing Rocket Based Combined Cycle systems, higher density fuels will be desirable

for airbreathing vehicles in the speed range of Mach 1 to 25. Endothermic fuels and fuel additives are sought to

increase the heat-sink capacity or cooling capacity of the fuel for hypersonic flight. Gelled H 2, 02, or methane

(CH4) (with appropriate gellants, such as water, ethane or other frozen cryogenic gellants) or nanoparticulate
gellants are also of interest due to the potential for higher propellant density for alrbreathing ramjet or scramjet

propulsion. Fuel systems supplemented by radical recombination catalysts, such as phosphorus species, to

accelerate recombination of hydrogen, oxygen, and hydroxyls (OH) to form water, with net improvement in thrust
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efficiencyforhighspeednozzleexpansions,withoutseverespecificimpulse(Isp)losses,arealsoofinterest.This
researchincludesanalyticassessmentsoffeasibility,practicaldemonstrationsoffueladditivetechniquesusingmini-
mal,efficient,smartdeliverysystems,anddemonstrationsofthrustaugmentationinnozzletestflows.Liquidair
systemsthatcanproduceanoxidizerfromcapturedairarealsobeinginvestigated.Theoxidizerproducedfromthe
airwouldbestoredonboardtheaircraftforlateruse.

GELLEDHYDROGEN

Thebenefitsofgelledhydrogenhavebeenknownformanyyearsandexperimentallyproveninthepast
(refs.11to15)Therearefivemajorbenefits:safetyincreases,boiloffreductions,densityincreaseswiththeatten-
dantareaandvolumerelatedmassreductionsforrelatedsubsystems(thermalprotectionsystem,structure,insula-
tion,etc.),sloshreductions,andIspincreases(insomecases).All ofthesebenefitstogethercanprovideGLOW
reductionsforairbreathingvehiclesandrocketpoweredvehicles.EarlytestsofgelledH2usedsilicagellants,but
requiredlargeweightpercent(wt%)valuesofthegellanttobesuccessful.Laterworkidentifiedsolidcryogenic
methaneandethane,aswellasnanoparticulatematerials,asmoreappropriategellantsforI-I2.

Specificanalysesoftheperformancegainsforvariousmissionsaredependentonthevehicleandmission
design.Figure5showstheGLOWforagelledO2/H2(H2gelledwithCH4)SSTOrocketversusoneusingliquid
O2/H2.ThegelledH2SSTOrockethasaverysimilarGLOW,soonlyasmallmasspenaltyispaidforthebenefits
ofthegelledH2.Thisvehicleusedthegelledhydrogenata4.2:1mixtureratioanda10-wt%gellantvalue.These
analyseshavenotyetincludedthebenefitsofsloshreduction,boiloffreduction,andtheseimpactsonreducingthe
vehicleGLOWandtheimprovementsontheoverallvehicleperformance.Systemsanalysesperformedforother
highdensityhydrogenvehicleshaveshownthatthereductionsoftheGLOWforincreaseddensityhydrogenare
verysignificant.Incaseswhereanotherhighdensityhydrogen,slushhydrogenwasused,thedensityincreasedby
16percent,theGLOWwasreducedby10.2percent,or102000Ibm.Forairbreathingvehicles,suchastheNational
AerospacePlane(NASP),theestimatedreductioninGLOWforslushhydrogenwasfrom20to50percent.Thus,
agelledhydrogenwitha10percentdensityincreasemaydeliverasignificantfractionoftheseairbreathingvehicle
GLOWreductionsandothersubsystemmasssavings.Supportingreferencesfortheseanalysesareprovidedin
reference11.

Safetycanbesignificantlyincreasedwithgelledfuels.A higherviscosityreducesthespillradiusofthegelled
hydrogenandlimitsthepotentialdamageandhazardfromafuelspill.Anotherimportantadvantageisthepotential
forleakreductionorelimination.Theleakpathsfromthefeedsystemswouldbeminimizedandthepossibleexplo-
sionpotentialwouldbereduced.TheextendeddowntimefortheSpaceShuttleduetohydrogenleakshasshownthe
highcostofspacecraftsittingidle,unabletolaunchtheirexpensivecargoes.

Boiloffreductionisanotherfeatureofgelledhydrogen.Theboiloffreductionsareuptoafactorof2to3over
ungelledliquidhydrogen(refs.11and12).Thisfeaturewillassistin longtermstorageofhydrogenforupperstages
thatmustsustainon-orbitstorageorlongcoasttimes.Also,lunar_ghtsandinterplanetarymissionswithlarge
hydrogenfuelloadswillderiveabenefit,reducingtheoveralltanksizebyminimizingthecryogenicboiloff.Taking
advantageoftheboiloffreductionwillrequiresomeredesignofthepropellantacquisitionsystem,asthegelled
hydrogenviscosityishigherinthequiescentstate.Oncethehydrogenisflowing,theviscositydrops,andthethixo-
tropicfluidiseasilymovedfromthetanktotheengine.

Significantdensityincreasesarepossiblewithgelledhydrogen.A 10percentdensityincreaseispossiblewith
10percentaddedethaneormethane.Thesegellantsareintroducedintothehydrogenasfrozenparticlesthatforma
gelstructureinthehydrogen.Figure6depictsthegelledhydrogendensityandtherocketperformancewhencom-
bustedwith02.A maximumIspisattainedat5-wt%methanegellant.However,thepastdatashowsthatthehydro-
genshouldbegelledwith10-wt%ofthefrozencryogen.Thedensityofthegelledhydrogenandtherocket
performancewereusedtoestimatethe"best"operatingpointforcurrentrocketpoweredSSTOvehicles.A design
pointusinga7.0:1mixtureratio,anda10-wt%gellantlevelappearedtodeliverthemostattractivedesignwiththe
lowestvehicleGLOW.Thisresultisincontrasttotheearlierresultsnotedabove,andshowsthatthereisnota
singledesignpointthatisattractiveforallapplications.References3,11,and12providessomeadditionalanalyses
of gelledhydrogendensityandperformanceandsomeadditionaldiscussionofitsbenefits.
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METALLIZEDGELLEDPROPELLANTS

Metallizedgelledrocketpropellantshavebeenconsideredformanydifferentapplications(refs.16to18).
Whileoperationalusagehasnotyetcometofruition,therearemanytechnologyprogramsthatareunderwayto
eliminatetheunknownswithgelledpropellantsandthepropulsionsystemsthatwillusethem.Numerousstudies
haveshownthepotentialbenefitsofgelledfuelsandoxidizers.Technologyprogramstoprovethecombustionper-
formanceofgelledpropellantshavebeenconductedmostrecentlybytheU.S.ArmyMissileCommand,withtheir
industryanduniversitypartners,fortacticalmissileapplications.

TheNASALewisResearchCenteranditspartnershaveinvestigated02/H2/A1and02/RP-1/A1forNASA
missionsandconductedexperimentalprogramstovalidateelementsofthecombustionandfueltechnology.Gelled
andmetallizedgelledhydrogenandRP-1havebeenemphasizedbecausehydrogenandRP-1aretypicalpropellants
forNASAlaunchvehiclesandupperstages.Derivativesofthesepropellantsarethereforepreferredtominimizethe
incrementalriskforanewlyintroducedpropulsionconcept.Gelledhydrogenontoitselfisalsorelatedtothistech-
nology.It'slikelyapplicationswouldbeforrocketpoweredlaunchvehiclesandupperstages,rocketbasedcom-
binedcyclealrbreathingvehicles,andcombination(rocketandairbreathing)propulsionoptions.

Figure7illustratestheGLOWreductionsforO2/RP-1/A1andNTO/MMH/A1propellantsforaSpaceShuttle
LiquidRocketBooster(LRB).TheseanalyseswereconductedtofindwaystoimproveSpaceShuttle'spayload
performancetotheSpaceStation.Theperformancecanbeincreasedseveralways.Verysignificantboosterlength
reductionsarepossiblewiththesehighdensitymetallizedfuels.Theselengthreductionscaneasethegroundhan-
dlingoftheboosters,andreducethedragduringascent,thusimprovingtheShuttle'sperformance.Alternatively,
themetallizedgelledboosterlengthcanbeallowedtogrowtothatoftheSolidRocketBooster,andthepayload
performanceoftheSpaceShuttleincreasesby15percentwith55-wt%RP-1/A1and35percentwith50-wt%MMH/
A1.Additionalincreasesinpayloadperformancewerepossiblewithsmalldiameterincreasesinthemetallized
gelledLRB.A 1-ftdiameterincrease(from12to13ft)wouldin increasetheShuttlepayloadinLEObyfrom
50000to70500Ibmusing55-wt%RP-I/A1.

Heattransferwiththemetallizedfuelsisanimportantcombustorandnozzledesignissue.Theresultsofthe
firstexperimentswith55-wt%O2/RP-1/A1heattransferareshowninfigure8.Fourdifferentfuelsareweretestedto
determinetheirperformance:traditionalRP-1,0-,5-,and55-wt%RP-1/A1.The0-wt%caseisagelledRP-1withno
addedaluminum.Theenginetestsuseda30-1bfthrustrocketengine.Theformationofasubstantialprotective
gelledlayerformedontheinjectorandchamberfromusingasilicagellantinthe0-and5-wt%RP-1/A1.Thisgelled
layercausedtheheatfluxreductionsinthesecondhalfofthechamber,andthiseffectisnotedparticularlythe
0-and5-wt%RP-1/A1cases.Thepeakheatfluxinthenozzleforthe5-and55-wt%RP-1/A1werenearlydouble
thatofthebaselineRP-1fuel.The55-wt%casesproducedametaloxidecoatingonthenozzlethroat,whichhad
stronginsulatingproperties.Improvedhightemperaturecoatings,ablativematerials,orO2coolingarepossible
avenuestoaccommodatethesehigherfluxes.

HIGHENERGYDENSITYPROPELLANTS

Newtechnologiesinatomformulationandphysicsofmaterialmanipulationhasledtothediscoveryandsyn-
thesisofmaterialsthatcanbeusedinrocketpropellants(refs.3and19to28).Solidcryogenicpropellantsstoring
atomsofH,A1,B,C,orotheratomicadditives,requireauniquepropulsionsystemdesignwherethefuelsarestored
atliquidheliumtemperaturesduringgroundhandlingandflight.Figure9showsthebenefitsofatomichydrogenas
alaunchvehiclepropellantandseveralvehiclesarecompared.ThebaselinecaseistheNationalLaunchSystem
(NLS)usingO2/H2propellantsatanIspof430s.ThereductionsinGLOWthatarepossiblewithatomichydrogen
areover50percentwitha750secspecificimpulse.ThisIspperformancelevelrequiresa15-wt%ofatomichydro-
genstoredinsolidH2.

TheoverarchingvisionforHEDMistocreateapropellantcombinationwhichhasatleasttheperformanceof
O2/H2(typicaloftheSpaceShuttle,whichdeliversaspecificimpulseof452sinvacuum)butwithhigheroverall
propellantdensity.Currentmaterialsofinterestarecubane,strainedringcompounds,polymericoxygen(04,06,
O8),polymericnitrogen(N4,N6,N8),B-Nanalogsofprisimane(B3N3H6),andadditivestocryogenicliquidsand
solids,suchasoxygenandhydrogen.Stabilizationandproductionofpolymericoxygenandpolymericnitrogen,and
theformationandproductionofhighenergydensitymaterialsinsolidhydrogenorotherappropriatesolidcryogenic
solidsis important.Formulationofhighenergydensitymaterials(HEDM)requiresuseofsophisticatedcomputer
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modelingtoguidetheexperimentalproduction.Laserexperimentsarebeingformulatedtocreateanddetectpoly-
mericoxygenandpolymericnitrogen.

Otherpropellantsandadditivesthatarenotcryogenicarealsobeingdeveloped.Methodsofmodeling,creating,
using,andstabilizingthesematerialsforuseasrocketpropellantsarebeingsoughtandimplemented.Formulation
ofmonopropellantsandbipropellantswithhighenergydensitymaterialsaretakingadvantageoftheextensivetheo-
reticaldevelopmentsofthelast50yearsandturnthemintorealisticpropellantsandadditives.Someofthenearterm
materialsthatarebeingimplementedaremethodsforlargescalecubane(C8H8)propellantproduction.Cubaneasan
additivetohydrocarbonpropellantsmayincreasethepayloadofrocketsystemsby10to20percent.Anotherimpor-
tantaspectoftheHEDMresearchisthedemonstrationoftheintegrateduseofcomputationalmodelingsoftwareto
assistinexperimentalformulationofhighenergydensitymaterials

Usingthesepropellantsismorecomplexthantraditionalpropellantsbecauseoftheiruniquechemistry.While
theabovementionedmonopropellantsareoftensimplerfuelswithadditivesthataretraditionalmoleculeswhichare
stableinstorage,thehighenergyspeciesmustbeformulatedverymeticulouslybecausetheyarenotoccurringin
nature.Theseformulationsofferincreasedenergydensity,buttheymustbemanufacturedandstoredinastabilizing
medium.Thismediummaybesolidhydrogenparticles(orothercryogenicmaterial)thatsurroundthenewlycreated
atomsormoleculesandisolatethem,preventingtheirrecombination.Figure10illustratestheexperimentalresults
oftheformationandstoragelifetimeofatomichydrogeninsolidhydrogen(ref.28).Aheatspikeoccurswhenthe
atomsrecombine,andit isnotedinthefigurewhenthenumberofatomsdropstozero.Thereleaseofaheatspikeis
theresultoftheatomsreachingacriticalstoragedensity,wherenomorethanacertainnumberofatomscanbe
storedin thesolidH2.NextgenerationRLVpropulsionsystemscanusethesefrozenhydrogenparticlesinacryo-
genicliquidcarrier,suchashelium(ref.19).

Storedmetalatomsinsolidhydrogenarethepenultimatestepinthedevelopmentofhigherperformance,higher
densitypropellants.Thesemoreadvancedpropellantswill requirelongerdevelopmenttimes,sotheywouldnotbe
thefirstpropellantstobecommercialized.Neartermaspectsrelatedtothesehighenergyspeciesmightbethepro-
ductionmethodsoftheatomsorspecies,thecryogenicfeedsystemcomponents,suchassuperinsulation,valvesand
otherflowcontrolcomponents,feedlines,cryogenicstorage,andleakdetectionsystems.

CONCLUDINGREMARKS

Usingimprovedpropellantscanloweroperationscost,simplifyspacecraftprocessing,andmakespaceflight
moreaccessibleandaffordable.Othercapabilitiesthatareenabledwiththesepropellanttechnologiesarebetter
vehiclecooling,reducedcryogenicboiloff,reducedvehiclestructuralmass,reducedthermalprotectionrequire-
ments,andimprovedsafety.

Manyadvancedvehiclesarebeingplannedforfutureaeronauticsandspacemissions.All areabletotake
advantageoftheextensiveandwellknownbenefitsofadvancedpropellantsandpropellantadditives.Monopropel-
lantsthataresaferanddenserthantraditionalpropellantscanreducedspaceaccesscosts.Aeronauticsmissions,
bothatmosphericandtransatmospheric,canuseendothermicfuelstosimplifythevehicleoperationsandprocessing
andallowhighspeedflightwithoutusingliquidH2.Gelledfuelscanincreasethedensityofliquidfuels,improve
theirsafety,andreducedcryogenicboiloffandminimizefuelslosh.Theadditionofmetalparticlestothegelled
fuelscanfurtherincreaseboosterandvehicledensity,givingmorebenefittospacecraftdesigners.Futuremissions
usinghighenergydensitymaterialscouldreducetheGLOWoflaunchvehicles,andif theycanbesimplified,may
enhanceorenablelargefasthumanplanetarymissions.Manyoptionsforthehumanexpansionintothesolarsystem
arepossiblebyusingadvancedpropulsion.
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